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ABSTRACT
Recently, online shopping has gradually become a common way of
shopping for people all over the world. Attractive commodity ad-
vertisements can attract more people to buy, which often integrate
multimodal multistructured information of commodities, such as
visual spatial information and fine-grained structure information.
However, traditional multimodal text generation focused on the rou-
tine description of what existed and happened, which did not match
the real-world advertising copywriting. Advertisement copywriting
has a vivid language style and higher requirements of faithfulness.
Unfortunately, there is a lack of reusable evaluation frameworks
and a scarcity of datasets. Therefore, we present a dataset, E-MMAD
(e-commercial multimodal multistructured advertisement copywrit-
ing), which requires, and supports much more detailed information
in text generation. Noticeably, it is one of the largest video cap-
tioning datasets in this field. Accordingly, we propose a baseline
method and metric on the strength of structured information rea-
soning to solve the demand in reality on this dataset. We achieve
SOTA performance on all metrics. We will release the dataset and
method to promote further investigations on both multimodal text
generation and e-commerce advertisement.

CCS CONCEPTS
• Computing methodologies → Natural language generation;
Video summarization; • Applied computing → Electronic
commerce.

KEYWORDS
datasets, multimodal, structure information

1 INTRODUCTION
Nowadays, online shopping has become one of the main ways for
people to shop, such as Taobao, Amazon. The product advertise-
ment is often an important factor in people’s shopping. Wonderful
product advertising can attract people’s attention and promote
sales. Commodity advertisement copywriting[? ] presents com-
modities in a more concise and intuitive way, which is convenient
for people to search and shop. Different from conventional text
generation [6, 24], commodity advertisement copywriting often
has vivid language style and flexible grammar. Meanwhile, it also
needs to comprehensively consider multimodal information[? ] and
fine-grained structural information[32] parameters of commodities,
which results in sellers often need to spend a lot of manpower,
time and money on elaborate design to produce high-quality adver-
tising copywriting. We named this more challenging problem as
multi-modal e-commerce advertisement copywriting generation.

Video

Structured Info.  Ontology:

<Brand: Adidas>

……
<Material: Pure cotton>
<Crowd object: Youth men>
Advertising  Copywriting:

The Adidas pants are made of high-quality pure cotton fabric with a

pretty comfy and breathable skin feel. The three-stripe design on

both sides shows college retro style, and the design of side pockets

is more convenient. The hem of tapered pants appears the spruce

and fashion style of men. Pure-color sweatpants are the necessary

all-match item in your wardrobe.

Product Core feature Summary:

Men’s spring autumn thin sweatpants and cotton relaxed tapered. 

： ……

Figure 1: An illustration of our dataset. The four different
parts of our dataset, from top to bottom are product informa-
tion (commodity displaying video, the product core features
summary, structured information) and commodity advertis-
ing description.We usemultimodalmultistructured informa-
tion to assist in generating a semantically richer copywriting.
The underlined words are closely related to the advertising
copywriting, and are also important in terms of fidelity.

Multimodal product advertising text generation is different from
video Caption [40, 41], natural language generation [6, 7], etc. The
information sources needed for the commodity copywriting are
diversified, which are closely related to the video display of com-
modity, commodity attribute table and commodity core feature
summary. For example, as shown in Figure 1, the product video
shows the spatial and visual color impact information of the prod-
uct, while the structured information of the attribute word lists
shows the accurate fine-grained information of the product, such
as brand and the product core features summary (unstructured
information), which summarizes the core features of the product in
a general way. Through multimodal fusion, structured and unstruc-
tured information is combined to directly generate high-quality
fine-grained text. This is also consistent with the fact that in real
life, text generation of commodity advertisements is closely related
to multi-modal information sources, and details of different modes

1
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are considered comprehensively. Therefore, how to extract the re-
quired information from multimodal and fully integrate is one of
the challenges in this task.

The other of the challenges is faithfulness. For commodity adver-
tising copywriting, its fine-grained key information should greatly
reduce factual errors of principle. For example, for an Adidas shoe,
a model-dependent output branding error cannot occur because
a similar Nike shoe appears in the training set. Faithfulness is
an extremely critical core issue. This information from product
structural attributes can make the description rigorous and reliable.
However, the current metrics[5, 46], such as KOBE[5] are also based
on N-gram for lexical diversity and BERTScore[46] are based on
the knowledge pre-train, which cannot calculate the accuracy of
attribute words in real-world advertisement application. To this
end, we proposed a corresponding metric, hard homologous Metric,
for auditing the fidelity of measured structured information.

To address these challenges, we elaborately collect a large-scale
e-commercial multimodal multistructured advertising dataset for
multimodal text generation research. To support in-depth research,
we collect a rich set of product annotations. Our dataset consists of
120,984 product instances in both Chinese and English, in which
each instance has a product video, a product core feature summary,
structured information and a caption. In response to the realistic
demand for advertising generation, we propose the multimodal
information fusion module and generation decoder module which
make full use of the rich information. In faithfulness, we propose
Conceptualization Operations 4.1 to conceptualize complex and
diverse information in real life as ontology. An ontology models
generalized data, that is, we take into consideration general objects
that have common properties and not specified individuals. Dataset
and code will be available at our Website. The proposed network
leads to a significant impovement over existing practical application
methods, on our constructed dataset.

In summary, our contributions concentrate on the following as-
pects:
(1) We introduce a fresh task: e-commercial multimodal adver-
tising generation. A new large-scale high-quality and reliable e-
commercial multimodal advertising dataset is introduced, which
requireds requires and supports multimodal fusion and faithfulness
accuracy. It is also one of the largest video-text datasets in this field.
E-MMAD is collected from human real life scenes and carefully
selected so that it is qualified to meet the needs of real life.
(2) We propose a simple yet effective strong baseline method to
solve the challenges in reality. Our approach achieves the Top-1
accuracy in faithfulness and other metrics, outperforming existing
baseline methods.
(3) As for the fidelity of advertising copy, we propose the hard
homologous metric. This metric allows advertising to be sourced.

2 RELATEDWORK
2.1 Multimodal video-text generation datasets
There are various datasets for multimodal video-text generation
that cover a wide range of domains, such as movies [30, 31], cooking
[8, 49], and Activities [2, 41]. MSR-VTT [41] is a widely-used dataset
for video captioning, which has 10,000 videos from 257 activities and
was collected in 2016. MSVD [4] was collected in 2011, containing

1970 videos. ActivityNet [1] has 20,000 videos but is used for Dense
Video Captioning [15, 18], which means to describe multiple events
in a video. TVR [21] is collected from movie clips whose text is
mainly character dialogue. Vatex [40] is a famous dataset released
in 2019, whose caption is written by batch manpower. Poet[45] is
an e-commerce dataset containing two small raw datasets BFVD
and FFVD. The data was downloaded directly from the Internet
and not carefully filtered by human multimodal alignment. As
shown in Table 1, we generated a larger video dataset after a lot
of time and manpower screening. In addition, the struct info that
we emphasize is carefully selected and generated by us to solve
the real fidelity problem, not from the rough data of the network.
This part will be used to solve the fidelity in the advertisement.
Compared with some mainstream datasets in Table 1, our dataset
also provide an additional product structured information. We find
that the advertising caption includes a lot of structured information
in fact.

2.2 Video Captioning Approaches
Video caption/description is one of the important tasks in mul-
timodal text generation[15]. Early video caption methods are all
based on templates [19, 25, 33]. However, sentences made in this
way tend to be rigid. The sequence-to-sequence model [38] is a
classic work, which includes an encoding phase and a decoding
phase. After CNN extracts the image features of the video frames,
an image feature is sent to the LSTM for encoding at each time
step and text will be generated in the decoding stage[17]. Some of
the popular practices recently are based on data-driven [48] and
transformer-based mechanisms [20, 43, 50]. MART [20] can pro-
duce more coherent, non-repetitive, and relevant text to enhance
the transformer architecture by using memory storage units[27, 42].
Vx2text [23] uses multimodal inputs for text generation. They use
a backbone [12, 34] model to transform different modalities infor-
mation to natural language and then the problem turns to natural
language generation. Recently, there are works[14, 39, 44] extract-
ing object-level features in representing the videos for video caption.
Although good progress has been made by them, the original infor-
mation of the modal is not fully utilized and integrated.

3 DATASETS
In this section, we will introduce our dataset in detail, including
the statistic analysis, collecting process, and comparison.

3.1 Data Collection
1) Dataset sources. Our dataset sources are the Chinese largest
e-commerce website shopping platform (www.taobao.com), from
which we have collected nearly 1.3 million commodity examples
with structured information. It comprised more than 4,000 merchan-
dise categories to guarantee the diversity of the dataset, such as
clothes, furniture, office supplies, etc. The information of each com-
modity data sample includes structured information, commodity
displaying video, product core feature summary and commodity ad-
vertising description. Different from previous works [4, 40, 41], the
sources of datasets are derived fromwhat merchants themselves nu-
merously design and select, which comply with the standard rules
of the authenticity of product advertisements and are supervised

2
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by false product advertising rules of Taobao. Specifically, videos
visually display the commodity performance and application. So
the E-MMAD are limited to e-commerce aspect. In addition, we
fully consider ethical privacy issues to ensure that the dataset has
no potential negative effects and legal issues [11]. All data is col-
lected in Taobao shopping platform, which is a public platform
for the general public. All information, even the characters in the
video, is ensured to comply with Taobao laws including personal
privacy, legal prohibitions, false information, protection of minors
and women, and so on.

In consideration of data and ethics, we perform programmatic
screening and manual cleaning again in accordance with the es-
tablished data cleaning rules. Figure 2 shows our data collection
process.

2) Data filtering. The intention for data filtering is to determine
whether the product advertising description is closely related to

Raw Data Corpus

Machine Filtering

Human Annotation

1.3 million

Product summary:

Classic White Sneakers Women Casual Canvas …..

Structured Info. Ontology:

<Season : Summer>

<Color: White>

……

Advertising Copywriting:

This pair of women's summer white canvas shoes is a classic vintage……  



Product summary:

Classic White Sneakers Women Casual Canvas …..

Structured Info. Ontology:

<Season : Summer>

<Color: White>

……

Advertising Copywriting:

This pair of women's summer white canvas shoes is a classic vintage……  



Product summary:

Big size summer shoes woman…..

Structured Info. Ontology:

<Season : Summer>

<Color: Blue>

……

Advertising Copywriting:

Summer sandals for men……  

Info. Error

Figure 2: The process of creating a dataset, includingmachine
filtering, manual post-filtering, etc. and data specification
of the dataset. Each set of data needs to be carefully filtered
and annotated manually in order to produce high-quality
multimodal dataset.

the product displaying video, and whether the structured infor-
mation of the product is in accordance with the composition of
the product advertising description and ethical considerations. The
product attributes structured information and product displaying
video will be valid only if human being can write similar product
advertising descriptions with them. We use programs to screen and
judge at first, traversing the values of structured information. Our
screening basis is the proportion of structured information words
in the product advertising description. When the proportion is up
to n words or more, the data will be reserved as valid data. After
copywriters’ continuous attempt to generate advertising descrip-
tions with structured information words that account for different
proportions, we finally determine the structured information with
more than five words in the product advertising description as valid
data and form 207,852 machine-screened data.
By virtue of this, we respectively test different groups of random
data to formulate screening and judgment rules. Multiple copywrit-
ers tested and discussed to make the manual evaluation criterion
several times. Finally, different testers sample 100 examples ran-
domly according to the judgment rules of Figure 6, and the pass rate
is mostly about 60%. In this case, we validate the manual screening
rules and draw the conclusion that random subjective factors hardly
have any influence. So far, the manual data screening and judging
rules have been formed, as is shown in Figure 6.

3) Data annotation. We invited 25 professional advertising
copywriters as data screening and annotation staff to conduct man-
ual screening under the rules of Figure 6 and The Toronto Decla-
ration . Manual screening of all data also ensures that each piece
of data complies with the Toronto Declaration and Taobao laws to
protect gender equality, racial equality, etc. In order to ensure the
reliability of the data, we use the following two methods to sample
and verify: (1). Add verification steps. We will send back samples
that have been annotated right answers to annotators from time
to time to check their work quality. (2). Multiple people Choices.
The data is sent to different people randomly. Only if the answers
of all people are consistently passable, can this data be qualified.
Finally, 120,984 valid data has been generated. Simultaneously, we
also translate the filtered valid data into English so that both Chi-
nese and English versions can be provided in the dataset. To ensure
the quality of the English version, we use the WMT 2019 Chinese-
English translation champion, Baidu machine translation. We also
monitor the translation quality in the manual screening section,
such as random checking in batch translation, using text error cor-
rection to monitor retranslation, and back translation comparison.

After 25 people’s diligent work of manual data labeling and
cleaning, there are 120,984 valid data selected finally.
3.2 Dataset Analysis
Among the 207,852 data we send for annotation, there are 120,984 el-
igible samples passing the screening.Wemake an elaborate analysis
on these valid data and the result is shown in Figure3. In addition to
this, Figure 3 reveals the distribution of the product videos’ duration
and advertising descriptions.

By Table 1 comparison, we can find that our product advertising
descriptions are not only at least twice longer than others, but
also root in more vivid and realistic ones used in practice. The
whole statistics about the structured information in our dataset
is displayed in Figure 3 (d). What’s more, there exist average 21

3
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Table 1: Comparison with other datasets. Videos, Average Time, Caption Length, Classes respectively represent the total number
of videos in the dataset, the average video time in the dataset, the average length of the captions in the dataset and the number
of instance types in the dataset. Input Modality indicates the input of the dataset, e.g. from Video to Text, Multimodal to Text.
Structure info. means whether the dataset contains structured information. There are 3,876 keys of the structure information
in E-MMAD dataset. en means English version dataset and zh means Chinese version dataset.

Datasets #Videos Average
Time

Caption
Length #Classes Input Modality

MSR-VTT [41] 10,000 14.8s 9 257 Video
MSVD [4] 1,970 9.0s 8 - Video
TVR [21] 21,800 9.0s 13 - Video-query
VaTEX (en/zh) [40] 41,269 10.0s 15/13 600 Video
FFVD (zh) [45] 32,763 27.7s 62 - Video - Attribute
BFVD (zh) [45] 43,166 11.7s 93 - Video - Attribute
E-MMAD (en/zh) 120,984 30.4s 97/67 4,863 Video - Summary - Structure info.

structured information words in each sample and 6.2 words of them
are finally displayed in its product advertising description. The (e)
shows the abundance of our datasets source classes.

3.3 Dataset Comparison
In Table 1, we make a comparison between our dataset and oth-
ers from the following several perspectives: dataset scale, dataset
diversity and dataset reliability.

1)Dataset scale: As shown in Table 1, the size of our E-MMAD
is the largest multimodal dataset among those we have already
known so far, with the longest video duration and text length, and
the richest structured information in the dataset.

2)Dataset Diversity: In terms of types, our dataset consists
of 4,863 categories. Our dataset is also available in Chinese and
English two versions, to support multi-language research, which
cannot be satisfied by a single language dataset. At the same time,
our Chinese and English corpus is richer in vocabulary, which can
generate more natural and diversified video descriptions.

3)Dataset Reliability: Compared with other manual batch-
written descriptions[40] and mechanically generated data, our data
annotation is derived from the real society. Each of them is an
exclusive description genuinely written by corresponding store.
Besides, the videos in our dataset are from the real product shooting
scene, other than clips from Youtube or movies. We firmly believe
that only resorting to reliable dataset, can we train models better.
Therefore, we invest considerable amount of manpower and time
in order to promote our dataset quality.

3.4 Dataset Significance
To the extent of our knowledge, the dataset we propose is the largest
multi-modal dataset so far, and the information involved is also the
most diverse, which can better optimize and improve the perfor-
mance of multi-modality models and promote their generalization
ability to adapt to different scenarios in real world. For subsequent
work, with the abundant and diverse information involved, our
dataset can be dedicated to several multi-modality domain tasks,
such as Video Retrieval [10, 21], Product Search [3] and so on. In

our future work, we will build more versatile e-commerce datasets
which can cover most tasks in this field based on this dataset.

4 METHOD
In this work, we present a novel approach called the Multi-modal
Fusion and Generation algorithm as shown in Figure 4, which ex-
tracts feature representations from three sources: the product core
feature summary, structured information(structured words) and
the displaying video’s frames and fuse them to generate captions.
Faced with various information words, our model uses ontology,
a method of conceptualizing information. That is to pre-process
the various data, conceptualize and extract information from the
complex information words to Key as highly conceptual network
features. For the restoration of complex information in the genera-
tion phase, we only need to perform the inverse conceptualization
operation at the end.

4.1 Conceptualization
During the training process, we pre-conceptualize the true product
descriptions. The formula is as follows:

𝑉𝑎𝑙𝑢𝑒𝑠𝑔𝑟 = 𝑆𝑊 .𝑣𝑎𝑙𝑢𝑒𝑠
⋂

𝐺𝑅.𝑡𝑜𝑘𝑒𝑛𝑠; (1)
𝑘𝑔𝑟 ∈ 𝑆𝑊 .𝑘𝑒𝑦𝑠; (2)
𝑡𝑜𝑘𝑒𝑛𝑔𝑟 → 𝑘𝑔𝑟 ,

∀ 𝑡𝑜𝑘𝑒𝑛𝑔𝑟 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠𝑔𝑟 . (3)

In the generation process, the raw caption with conceptualized
information generated by the model is de-conceptualized to obtain
the final caption. The de-conceptualization is as follows:

𝑉𝑎𝑙𝑢𝑒𝑠𝑟𝑐 = 𝑆𝑊 .𝑘𝑒𝑦𝑠
⋂

𝑅𝐶.𝑡𝑜𝑘𝑒𝑛𝑠; (4)
𝑣𝑔𝑟 ∈ 𝑆𝑊 .𝑣𝑎𝑙𝑢𝑒𝑠; (5)
𝑟𝑐_𝑡𝑜𝑘𝑒𝑛 → 𝑣𝑔𝑟 ,

∀ 𝑟𝑐_𝑡𝑜𝑘𝑒𝑛 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠𝑟𝑐 . (6)

4
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Figure 3: Statistics about the five different forms of data in
our dataset. The data statistics are presented in terms of video,
structured information, caption, and the main classes of the
dataset contained, respectively.

Among them, Equation 3/6, 𝐴 → 𝐵 means replacing token 𝐴 with
token 𝐵.𝐴 ∈ 𝐶 means token𝐴 is an element of set𝐶 .𝐺𝑅.𝑡𝑜𝑘𝑒𝑛𝑠 and
𝑅𝐶.𝑡𝑜𝑘𝑒𝑛𝑠 are the sets of corresponding n-gram phrases in ground
truth and raw caption, respectively. 𝑆𝑊 .𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑆𝑊 .𝑘𝑒𝑦𝑠 respec-
tively correspond to the sets of keys and values in the structured
information. In terms of the model input, the ontology of the struc-
tured information part is conceptual value words. An ontology
models generalized data, that is, we take into consideration general
objects that have common properties and not specified individuals.
By this, the 3,876 types of Keys represent the various information
words as the highly conceptual network feature input. We also

reference the summary as the basis to determine the priority po-
sition of each key according to the order in which the structured
information appears in the summary.

4.2 Representation
Textual Information. Given a product core feature summary as a
list of K words, conceptualized product attributes as a list of N keys,
we embed these words and keys into the corresponding sequence of
d-dimensional feature vectors using trainable embeddings [9, 47].
In addition, since the keys of structured information are prioritized,
we use position embedding to represent the priority position of the
keys.
Visual Information. Given a sequence of video frames/clips of
length S, we feed it into pre-trained 3D CNNs[16] to obtain visual
features 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝐾 } ∈ R𝑆×𝑑𝑣 , which are further encoded
to compact representations 𝑅 ∈ R𝑆×𝑑 , which have the same di-
mension as the representation of textual information via a Visual
Embedding Layer. The Visual Embedding Layer can be formalized
as following:

𝑓𝑉𝐸𝐿 (𝑣) = BN(𝑔 ◦ 𝑣 + (1 − 𝑔) ◦ 𝑣); (7)

𝑣 =𝑊1𝑣
⊤; (8)

𝑣 = tanh (𝑊2𝑣) ; (9)
𝑔 = 𝜎 (𝑊3𝑣) . (10)

𝐵𝑁 denotes batch normalization, ◦ is the element-wise product,
𝜎 means sigmoid function,𝑊1 ∈ R𝑑×𝑑𝑣 and {𝑊2,𝑊3} ∈ R𝑑×𝑑 are
learnable weights.

4.3 Multimodal Fusion
After embedding all information from each modality as vectors
in the d-dimensional joint embedding space, we use a stack of L
transformer layers with a hidden dimension of d to fuse the multi-
modal information consisting of a list of all 𝐾 + 𝑁 + 𝑆 modalities
from

{
𝑣 frames
𝑆

} {
𝑣words
𝐾

}
and

{
𝑣
keys
𝑁

}
. Through the self-attention

mechanism in transformer, we can model inter- and intra- modality
context. The output from our Multimodal Information Fusion and
Reinforcement module is a list of d-dimensional feature vectors for
entities in each modality, which can be seen as their interrelated
embedding in multimodal context. In this work, the parameters
chosen for our the module are consistent with the parameters of
BERT-base (L=12, H=768, A=12), where L, H, A represents the num-
ber of layers, the hidden size, and the number of self-attention
heads respectively.

4.4 Generation Decoder
Our model’s decoder is a left-to-right Transformer decoder, which
is similar to the model architecture of [6, 28]. The decoder accesses
multimodal fusion outputs at each layer with a multi-head attention
[36]. Specifically, the decoder applies a multi-headed self-attention
over the caption textual feature. After that, the position-wise feed
forward layer was used to produce a distribution probability of
each generation tokens for the final generated caption. There is a
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The Nike pants are made of high-quality pure cotton fabric 

with a pretty......Pure-color sweatpants are the necessary all-

match item in your wardrobe.

Title Embedding

Men’s spring autumn 

thin sweatpants and 

cotton relaxed tapered. 

3D ConvNet Ontology Embedding

Multimodal Information Fusion

Generation Decoder

Deconceptualized

The Brand pants are made of high-quality material fabric with a 

pretty comfy and breathable skin feel. The design feature …… 

Pure-color category are necessary all-match item in your wardrobe.

Conceptualize Key

Extraction

Raw 

Generation

Select from Key to Value

1 2 3 n
+

Structured Information

Gender Season Category …
Last Key 

Token

Last

Generation

Key Value

Gender Male

Brand Nike

Style Fashion Brand

Pattern Pure Color

Category Sweatpants

Style 

elements Relaxed fit

······

Season Spring and 

Autumn

Figure 4: The overall architecture of ourmodel, which contains threemain parts: the representation formultimodal information,
the multimodal fusion module based on self-attention and the generation decoder module on the basis of [29]. According to
the Key-Value, the used Structure information words are conceptualized as ontology to face the various words such as assorted
brands in real life.

Table 2: Performance (%) comparison with our proposed model and others. The NACF + multi-input means that we concat the
structured information and summary with video feature directly as input. On the premise of fair comparison, the following
methods are relatively classic and available, which are applicable on E-MMAD by our objective attempts.

Version Input Method Bleu1 Bleu2 Bleu3 Bleu4 Rouge_L CIDEr

en

Text NLG [6] 13.6 6.8 3.1 1.9 13.0 10.1
Video NACF [43] 18.9 7.9 3.9 2.2 15.3 14.8

Multimodal
NACF + multi-input 20.0 8.5 4.3 2.4 17.8 18.5
TVC [21] 21.3 12.4 6.2 3.7 19.3 22.5
Ours (en) 25.0 16.6 9.6 7.2 25.3 29.1

zh-CN Text CPM (zh) [47] 7.9 4.6 1.1 0.5 7.2 8.3
Multimodal ours (zh) 11.6 6.5 4.4 2.2 12.5 15.3

description of part of the formula for the decoder module:

ℎ0 = 𝑉 cap ·𝑊𝑡 + 𝑃𝐸 ·𝑊𝑝 ; (11)
ℎ𝑙 = Trans_Block (ℎ𝑙−1) ; (12)

𝑃 (𝑤) = Softmax
(
ℎ𝑛𝑊

𝑇
𝑒

)
; (13)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = sin
(
𝑝𝑜𝑠/100002𝑖/𝑑model

)
; (14)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos
(
𝑝𝑜𝑠/100002𝑖/𝑑model

)
; (15)

where 𝑉 𝑐𝑎𝑝 = {𝑣1, 𝑣2, . . . , 𝑣𝑥 } is the textual vector of caption, n
is the number of layers, ∀𝑙 ∈ [1, 𝑛], and𝑊𝑡 ,𝑊𝑝 is the learnabale
weight for caption embedding feature and position encoding re-
spectively. 𝑇𝑟𝑎𝑛𝑠_𝐵𝑙𝑜𝑐𝑘 represents a block of the decoder in the

Transformer [36]. We refer to [29] as the model decoder architec-
ture.

5 EXPERIMENTS
In this section, we will show a series of experiments of our pro-
posed model on E-MMAD, including ablation studies, comparison
experiments and state-of-the-art video caption methods and human
evaluation.

5.1 Implementation Details
All the experiments are conducted on Nvidia TitanX GPU. The
proposed model is implemented with PyTorch. For the represen-
tations of videos, we follow [43] for fairness and opt for the same
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type, first extract 3D features with 2048 dimensions, 2048-D image
features from ResNet-101 [13] pre-trained on ImageNet dataset. For
generation decoder, we use <sep> to separate the input from the
ground truth of caption. We adopt diverse automatic evaluation
metrics to compare with other model: BLEU [26], Rouge-L [22],
and CIDEr [37]. It is worth noticing that the focus of the CIDEr
evaluation metric is on whether the generated caption captures the
major information or not. Since the major information captured
by each model is different, the key information component of the
generated caption will not be the same, but it is cognitive at the
semantic level, so the CIDEr evaluation metric will have a relatively
large fluctuation. Our model introduces structured information so
that the generated caption can include most of the major informa-
tion. Therefore, the caption generated by our model can achieve
significant results in the evaluation index of CIDEr.

5.2 Comparison with Other Approaches
During the comparison experiments, we uniformly divided the
Chinese and English versions of our dataset into training set, vali-
dation set and test set in the ratio of 6:2:2 for training and testing.
Since the current mainstream models do not use multimodal data
for captioning, we use unimodal data for captioning on some clas-
sic and available methods, such as video caption, nlg, etc. For the
sake of fairness of comparison, we simply modify the input part of
the above experimental model to accommodate multimodal data.
As we can see from Table 2, the comparison of the results before
and after the model modification shows that multimodal data can
substantially improve text generation tasks. It indicates that multi-
modal information indeed helps captioning by modal information
between the mutual enhancement. As shown in Table 2 our algo-
rithm achieves a better performance than other methods because
our model makes better use of multimodal data in the means of
fusing different modalities and structured information to reason.

5.3 Ablation studies
Multimodal Input. We perform ablation studies based on chang-
ing the input components of our proposed model as a way to vali-
date the importance of our proposed dataset containing structured
information. As shown in Table 3, we analyze the gap between the
generated caption of the model and the real commodity advertising
description in the absence of partial information. As we can see,
the absence of any of the three input components significantly
degrades the final generated caption result. From our analysis of
the generated caption, we can conclude that: 1) the lack of struc-
tured information will make the generated caption less informative,
rigorous and reliable.

2) The lack of a commodity core feature summary or displaying
video will impair the foundation of generated text. In addition, the
structured information is like a knowledge base, which can promote
inference and judgment to generate appropriate caption.

Conceptual Operation. Considering that writing product de-
scriptions in real life often involves a great number of unfamiliar
words, which makes it hard for the model to identify and remember
its feature when facing a new word, such as new brand name. The
predecessor’s approach tend to use as much corpus and large model

Table 3: Performance comparison with our proposed model
by masking different parts of input and only using the re-
mainder as input. Here "Summary", "SI" and "Video" indicates
commodity core feature summary, structured information
and commodity displaying video respectively.

Input Bleu1 Bleu2 Bleu3 Bleu4 Rouge_L CIDEr
SI & Video 22.8 14.8 6.9 5.5 22.2 25.3
Summary & Video 19.5 9.4 4.5 3.1 16.4 15.7
Video 15.9 6.4 3.4 2.1 15 13.2
Summary & SI 22.0 13.8 5.8 4.9 20.6 23.7

parameters as possible, which brings huge difficulties to natural lan-
guage generation. In this case, we proposed the Conceptualization
operation. As shown in Table 4 , we conduct ablation experiments
about Conceptualization on the Chinese and English datasets. As
for models without conceptual operations, we use unconceptualized
captions as the ground truth to train. We directly input unordered
structured words for the input of the model. Experiments have
proved that the Conceptualization operation can indeed bring a
significant effect improvement, because this method can concep-
tualize and extract information from complex information in the
dataset, and thus highly conceptualize network features. We expect
this discovery to inspire the community.

Table 4: Performance comparison of whether our proposed
model has conceptual operations (CO).

Operation Bleu1 Bleu2 Bleu3 Bleu4 Rouge_L CIDEr
ours w/o CO (en) 23.8 15.4 8.1 6.4 24.2 27.3
ours w/o CO (zh) 9.9 5.5 2.8 1.5 10.1 12.4
ours w/ CO (en) 25.0 16.6 9.6 7.2 25.3 29.1
ours w/ CO (zh) 11.6 6.5 4.4 2.2 12.5 15.3

5.4 Hard Homologous Metric
As shown in Table 5.2, we adopt three common NLG metrics. BLEU
[26] for sanity check, ROUGE_L [22] based on the longest common
subsequence co-occurrence, CIDEr [37]based on human-like con-
sensus. However, in reality application, as shown in Firgure5, we
found that, the advertisement copywriting has the characteristics
of flexible language style and rich vocabulary, and fidelity is par-
ticularly important. In terms of faithfulness, product advertising
especially focuses on key information such as product brand and
color, which is not fully reflected in the above indicators. For ex-
ample, for Adidas shoes, the model can be lazy and output Nike
brand because there is a similar training corpus in the training
dataset, which is a common and serious mistake. To address this
problem, we proposed a hard homologous metric. In terms of accu-
racy, we traverse the attribute words in each groundtruth (dataset
has marked the key ontology of each value word), and compare
with generation to calculate the proportion of correct words in gen-
erated words. In terms of error rate, according to firgure 3 statistical
data and realistic requirements, we successively select brand, color,
material, people, time and season as the five key labels as top-5
core attribute words. If they are inconsistent, they will be regarded
as errors. In the meantime, we’ll call the rest unknown. Under such
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Video:

Summary:

Structured

Info.

Ontology

:

Ours :

CK chain bag for women. Decathlon children’s 20 inch bicycle. Adidas black sports shoes.

<Material: Leather>

<Color: White>

<Crowd: Women>

<Season: Summer>
……

CK white women's bag is

designed in a one shoulder

chain style. It is exquisite

and portable. Summer

shopping essential small bag,

show goddess demeanor!

Copywriter:

The white women's bag is

the latest fashion trend

published by Calvin Klein.

It adopts one shoulder

chain design to make

shopping more convenient

for you. Essential small

bag in summer!

<Brand: Decathlon>

<Color: White>

<Crowd: Children>

<Wheel size: 20 inches>
…… ……

<Brand: Adidas>

<Color: Dark>

<Season: Summer>

<Category: Sports shoes>

(a)

Decathlon kids bikes use 20-

inch wheels, which is designed

to be safer for kids. The white

bike body highlights children’s

youth and vitality in the sun. It

is the best choice for children's

outdoor trips.

Decathlon children's bikes use

20-inch wheels. The child

riding a white bicycle looks

handsome outside the house. It

is essential children's toys for

families!

The Adidas sports shoe is

designed with knitting

technology, which is more

comfortable to wear. Limited

summer running time event

price is only 389 RMB, now

or never, come to snap up!

(c)

The Adidas sports shoe is a

pure black simple design style.

Knitting technology design

conforms to human body

mechanics. Essential sneakers

for summer running!
(b)

Figure 5: Some example results generated by our methods.

hard homologous metric, significant statistical analysis results were
shown in Table 5 for the faithfulness of product advertisements
copywriting.

Table 5: The results of our propose hard homologous metric.

Correct Rate Erro Rate Unknown

Ours w/ conception 18.7% 20.2% 61.1%
w/o conception 13.8% 27% 59.2%

NLG
(CPM)

w/ conception 15.6% 23.1% 62.3%
w/o conception 9.8% 30% 60.2%

Video caption
(NACF)

w/ concaption 10.9% 29% 60.1%
w/o conception 5% 38% 57%

5.5 Human Assessment
It is well-known that the human evaluation metrics[35] for video
captioning are required due to the inaccurate evaluation by auto-
matic metrics. We especially focus on advertising generation, which
depend on human aesthetics. So we invite the people involved in
the data annotation and new advertising slogan designers to con-
duct the human evaluation. We select 200 samples from the test
dataset and each evaluator evaluate each of these 200 samples to
reflect the performance of our model by rating whether the caption
generated by our model can be used as a description of the product.
As the result shows in Table 6, the caption generated by our model
has a certain degree of pass rating, whose results can be approbated
by people. Therefore, this is also acceptable that our experiments

on Table 2 did not achieve high scores for mechanical evaluation
indicators. We also test the human performance. The human test
results were generated by the merchant copywriters.

Table 6: The pass rate results of the human evaluation, re-
flecting the proportion of the 200 reality application test
examples where the model generated caption could be used
as a product description that describes the reasonableness of
the generated caption. Annotators are from the dataset an-
notation and persons are from the frequent online shopping
masses.

Annotator 1 Annotator 2 Annotator 3 Person 1 Person 2 Person 3
Ours 42% 44% 43% 48% 56% 53%
CPM 30% 23% 27% 40% 47% 39%

Human Performance 74% 77% 69% 90% 81% 89%

6 CONCLUSION AND FUTUREWORK
This research sets out to provide an e-commercial multimodal mul-
tistructured advertisement copywriting dataset, E-MMAD, which
is one of the largest video captioning datasets in this field. Based on
E-MMAD, we also present a novel task: e-commercial multimodal
multistructured advertising generation, and propose a baseline
method on the strength of multistructured information reasoning
to solve the realistic demand. We hope the release of our E-MMAD
would facilitate the development of multimodal generation prob-
lems. However, there still exist limitations about our dataset and
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method that should be acknowledged as shown in Firgure 5. We
cannot identify the price information of the video in (c), which
may require video OCR or ASR technology. Moving forward, we
are planning to extend E-MMAD to better performance and more
diversified tasks by exploring new model structures, fine-grained
and so on.
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A DATASET SUPPLEMENT.
There are the data standards examples as shown in Firgure 6. More data will be released on the Source Link: https://github.com/E-MMAD/E-
MMAD

Eligible data standards

The video shows enough product 

information.

Commodity displaying lens should 

be above 50%.

The description words are concise 

and reasonable.

Different modal information 

should be closely related.

Videos should show product 

attributes as much as possible.

The length of advertising 

description is about 100 words.

Videos are free of violence, 

pornographic factors.

Unqualified data standards

(1). Live broadcast about talking 

not showing.

(2). The video displaying about 

specific product is insufficient.

(3). The advertisement is 

exaggerated.

(4). Product advertising description 

plagiarize the product core feature 

summary totally.

(5). There exist spelling errors and 

grammatical errors.

(6). The advertising description 

comes from no foundation.

(7). A lot of repetitive and 

redundant words in the structured 

information.

Unqualified data

Eligible data

(1) (2)

Ad: 

A cure-all wonder drug. (3)

Figure 6: The overall architecture of ourmodel, which contains threemain parts: the representation formultimodal information,
the multimodal fusion module based on self-attention and the generation decoder module on the basis of [29]. According to
the Key-Value, the used Structure information words are conceptualized as ontology to face the various words such as assorted
brands in real life.
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